

Aalborg Universitet

Overvågning af Limfjordens vandskifte

Larsen, Torben; Larsen, Finn

Publication date: 1986

Document Version Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):

Larsen, T., & Larsen, F. (1986). Overvågning af Limfjordens vandskifte. Aalborg Universitetscenter, Inst. for Vand, Jord og Miljøteknik, Laboratoriet for Hydraulik og Havnebygning.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AALBORG UNIVERSITETSCENTER LABORATORIET FOR HYDRAULIK OG HAVNEBYGNING SOHNGARDSHOLMSVEJ 57 DK-9000 AALBORG DANMARK

**

Januar 1986

OVERVÅGNING AF LIMFJORDENS VANDSKIFTE

Marcall B

Torben Larsen & Finn Larsen

Torben Larsen & Finn Larsen

OVERVÅGNING AF LIMFJORDENS VANDSKIFTE

Januar 1986

Januar 1986

OVERVÅGNING AF LIMFJORDENS VANDSKIFTE

af Torben Larsen, Aalborg Universitetscenter og Finn Larsen, Limfjordskomiteen, Viborg Amtskommune

Indlæg ved Tredie Danske Havforskermøde som afholdtes på August Krogh Instituttet Københavns Universitet Januar 1986 Arrangeret af Dansk Nationalråd for Oceanologi

INDHOLDSFORTEGNELSE

1.

3.

4.

5.

6.

7.

9.

11.

8

3 INDLEDNING 2. LIMFJORDSKOMITEENS RECIPIENTPLANLÆGNING FOR LIMFJORDEN ... 3 NÆRINGSSALTBELASTNING PÅ LIMFJORDEN 4 3.1 Baggrundsbelastning 4 3.2 Næringssaltbelastning fra det åbne land 5 7 3.3 Belastning fra punktkilder Dambrug 8 3.4 SAMLET BELASTNING 1984 9 BELASTNINGSREDUKTION FORESLÅET AF LIMFJORDSKOMITEEN 10 KONTROLPROGRAM, GENERELT 14 KONTROLPROGRAM FOR VANDSKIFTE 15 DEFINITION AF NETTOSTRØM 15 GENNEMGANG AF MÅLEMETODER FOR NETTOSTRØMMEN 16 9.1 Måling med manuel eller selvregistrerende måler 16 9.2 Limfjordskomiteens Limfjordsmodel 17 9.3 Indirekte målemetoder ud fra vandspejlsforskelle og/eller vindobservationer 17 10. NØJERE BESKRIVELSE AF BEREGNINGEN AF NETTOSTRØMMEN UD FRA VANDSTAND I LØGSTØR OG AALBORG SAMT VINDEN 18 Chezy's formel i et bredt tværsnit med 10.1 vindpåvirkning 18 10.2 Vindforskydningsspændingen 19 Bortfiltrering af tidevandsstrømmen 20 10.3 Tilpasning af parametre, målenøjagtighed 20 10.4

REFERENCER

side

23

1. INDLEDNING

Dette indlæg har til formål at orientere om det arbejde, som pågår i forbindelse med Limfjordskomiteens overvågning af vandkvaliteten i Limfjorden.

Indlægget giver først en oversigt over stofbelastningen af næringssalte på fjorden. Dernæst gives en detaljeret beskrivelse af, hvorledes man fremover vil overvåge vandskiftet i fjorden, således at man får mulighed for at adskille virkningen af de kommende reduktioner i belastningen fra de variationer fra år til år, som skyldes det varierende vandskifte.

2. LIMFJORDSKOMITEENS RECIPIENTPLANLÆGNING FOR LIMFJORDEN

Ansvaret for tilstanden i søer, åer, vandløb, grundvand, fjorde og de kystnære dele af havet er pålagt amtskommunerne, og Limfjorden og dens ferskvandstilløb er derfor også et amtskommunalt ansvarsområde.

Ansvaret deles mellem Århus, Nordjyllands, Ringkjøbing og Viborg amtskommuner, og de nødvendige udredende undersøgelser af Limfjorden er derfor foregået i et fællesskab.

Til styring af den fælles indsats i Limfjorden nedsattes i 1972 Limfjordskomiteen. Komiteen er sammensat af en politiker fra hvert af de fire amtsråd, en politiker fra hver af kommuneforeningerne i Ringkjøbing, Viborg og Nordjyllands amtskommuner samt de fire amtsvandinspektører.

Limfjordskomiteen er med baggrund i sit undersøgelses- og kontrolprogram i Limfjorden rådgivende for amtsrådene og er endvidere blevet pålagt at udfærdige et forslag til recipientkvalitetsplan for Limfjorden.

Limfjordskomiteens undersøgelser, bl.a. Limfjordsundersøgelsen 1973-75, viser, at der er belæg for at betragte Limfjorden fra Hals til Thyborøn som et og samme fjordsystem. Derfor bærer alle udledninger enten de sker direkte til fjorden eller til vandløb i fjordens opland et fælles ansvar for forureningen i alle dele af Limfjordssystemet.

I Limfjordskomiteens forslag til recipientkvalitetsplan er der derfor anvist fælles retningslinier for alle udledninger i hele Limfjordens opland.

3. NÆRINGSSALTBELASTNING PÅ LIMFJORDEN

I det følgende gives et estimat over den nuværende næringssaltbelastning på Limfjorden og dens fordeling på kilder.

Følgende kildetyper vil blive vurderet:

- 1. baggrundsbelastning
- 2. belastning fra det åbne land
- 3. belastning fra byspildevand og industri
- 4. belastning fra dambrug
- 5. atmosfærisk deposition

3.1 Baggrundsbelastning

Ved en baggrundsbelastning på Limfjorden forstås her den belastning på Limfjorden fra oplandet mv., som man ville have, såfremt oplandet henlå i ubelastet tilstand (minimumsbelastning i et kulturlandskab).

Et skøn for baggrundsbelastningen fra oplandet kan fås ved at gå ud fra et næringssaltniveau, som findes i uforurenede kilder og småvandløb. Ud fra en række recipientundersøgelser vurderes det, at man kan regne med følgende koncentrationer af kvælstof og fosfor for uforurenede vandløb:

Kvælstof	0,6	mg	N/L
Fosfor	50	μg	P/l

Benyttes disse værdier, fås en baggrundsbelastning på Limfjorden på:

Kvælstof	2,6	x	6	x	100	=	1560	tons/år
Fosfor	2,6 :	x	50)		=	130	tons/år

svarende til

Kvælstof	\sim	2,0	kg/ha/år
Fosfor	\sim	0,2	kg/ha/år

Fra atmosfærisk deposition (nedbør) er regnet med følgende bidrag i en naturtilstand:

Kvælstof	5	kg/ha
Fosfor	0,20	kg/ha

hvilket giver følgende årlige belastningsbidrag på Limfjorden:

Kvælstof	5	kg/ha	х	1500	x	100	ha	=	750	tons
Fosfor	0,20	kg/ha	х	1500	x	100	ha	=	30	tons

For atmosfærisk deposition med kvælstof gælder det, at den nuværende deposition udgør ca. 20 kg N/ha/år, og der er skønsmæssigt konstateret en fordobling i depositionen over de sidste tyve år.

For fosfor ligger det nuværende niveau på depositionen på 30-50 kg $P/km^2/ar$, og der er for basistilstanden skønnet et niveau på 20 kg $P/km^2/ar$.

Et vist fejlskøn på dette bidrag har ikke den store betydning for den samlede vurdering.

3.2 Næringssaltbelastning fra det åbne land

Fra det åbne land tilføres og udvaskes næringssalte fra en række "kilder":

- 1. Udvaskning fra dyrkede arealer
- 2. Tilførsel fra enkeltejendomme mv.
- 3. Ulovlige tilførsler fra ajle mv.
- 4. Udvaskning fra udyrkede arealer

Landbruget står som ansvarlig for de tre førstnævnte udledningstyper. Landbrugets del af belastningen med fosfor og kvælstof inddeles populært i to hovedgrupper, nemlig i markbidrag (udvaskning fra dyrkede arealer) og gårdbidrag (tilførsel fra enkeltejendomme plus ulovlige tilførsler af ajle mv.)

I Limfjordsområdet forefindes en lang række stoftransportmålinger i vandløb, hvilket kan danne baggrund for en konkret estimering af arealbelastningen i Limfjordsoplandet. En samlet opgørelse af belastningen med næringssalte på Limfjorden blev foretaget i forbindelse med Limfjordsundersøgelsen i 1973-75, og en tilsvarende opgørelse er blevet foretaget for året 1984 og vil blive foretaget hvert år i de kommende år.

I nedenstående tabel er vist tallene for 1984 for 9 større vandløb for total kvælstof transporten og de normerede bidrag for 1973-75. At tallene for 1973-75 er normerede vil sige, at de målte værdier - for at få værdierne for et år med normalafstrømning - er forøget med ca. 20%, idet afstrømningen i perioden 1973-75 lå ca. 20% under langtidsmidlen.

5.

		1973-75			1984	
	Areal	Kildestr	. Belastn.	Areal	Kildestr	. Belastn.
Kvælstofkilde	km ²	t/år	kg/ha/år	km ²	t/år	kg/ha/år
Skive-Karup å	756	889	11,8	759	1208	15,9
Rye å Skals å	593 607	735 505	12,3 8,3	549 556	1370 898	25,0 16,2
Lindenborg å Simested å	372 237	415 394	11,1 16,6	368 224	1048 824	28,5 36,8
Lerkenfeld å Storå	177 147	235 217	13,2 14,7	188 101	506 364	26,9 36,0
Trend å Lindholm å	150 163	214 202	14,2 12,3	136 157	285 267	20,9 17,1
Total	3202	3806	12,0	3038	6770	22,3

For at få et rimeligt sammenligningsgrundlag skal belastningen for 1984 på 22,3 kg/ha/år normeres, idet afstrømningen i 1984 har været ca. 20% større end langtidsmidlen. Herved reduceres belastningen til ca. 18 kg/ha/år i gennemsnit for de 9 vandløb. Dette svarer til en stigning i kvælstofbelastningen på 50% i forhold til 1973-75 niveauet.

I ovennævnte arealbelastninger er inkluderet et bidrag fra kontrollerbare kilder (rensningsanlæg, dambrug mv.). Fratrækkes dette bidrag, findes skønsmæssigt, at bidraget fra det åbne land i perioden fra 1973-75 til 1984 er steget fra ca. 10 kg N/ha/år til ca. 15 kg N/ha/år. De nævnte værdier inkluderer baggrundsbelastningen på rundt regnet 2 kg N/ha/år. Den estimerede stigning er i overensstemmelse med de skøn over udviklingen, som foreligger i miljøstyrelsens NPO-redegørelse og Vandkvalitetsinstituttets rapport over udviklingen i kvælstoftabene fra dansk landbrug og konsekvenserne for vandmiljøet.

Det bemærkes, at i forhold til det niveau på godt 20 kg N/ha/år, som ovennævnte publikationer regner med som oplandsbidrag på landsbasis, ligger man væsentligt lavere i Limfjordsområdet.

I omstående tabel er vist en sammenligning af fosforbelastningen fra 1973-75 med de opgjorte belastninger for 1984 for 7 større vandløb.

		1973-75				
	Kilde	Areal	Belastn.	Kilde	Areal	Belastn.
Fosforkilde	t/år	km^2	kg/ha/år	t/år	km^2	kg/ha/år
-				*		
Skive-Karup å	95	756	1,3	74	759	1,0
Rye å	70	593	1,2	90	549	1,6
Lindenborg å	31	372	0,8	30	368	0,8
Skals å	24	607	0,4	35	556	0,6
Halkær å ^{*)}	21	195	1,1	22	179	1,2
Simested å	21	237	0,9	28	224	1,3
Trend å	20	150	1,3	13	136	1,0
Total	282	2910	1,0	292	2771	1,1

^{*)}inkl. Herreds å

Normeres det totale bidrag på 1,1 kg/ha/år for 1984, idet afstrømningen har været 20% større end langtidsmidlen, fås en belastning på 0,9 kg/ha/år, altså et fald i fosforbelastningen via vandløb på ca. 10% over 10 år. Dette er dog ikke en signifikant ændring.

Fratrækkes bidraget fra de kontrollerbare kilder, kan det totale oplandsbidrag for fosfors vedkommende estimeres til 0,5 kg P/ha/år. Regnes med samme procentvise fordeling mellem gårdbidrag og markbidrag som i NPO-redegørelsen fås, at udnyttelse af den åbne del af oplandet skønsmæssigt giver anledning til følgende belastning udover basisbelastningen.

Kildetype	Kvælst	of	Fosfo	or	
	kg/ha/år	t/år	12	kg/ha/år	t/år
Markbidrag	9	6600			_
Gårdbidrag	4	2900		0,3	220
I alt	13	9500		0,3	220

3.3 Belastning fra punktkilder

Punktbidragene består af byspildevand, dambrugsbelastning, industrispildevand og en del af den atmosfæriske deposition (nedbør).

Byspildevand

For industrispildevand med separat udledning foreligger ikke i øjeblikket en samlet oversigt.

Opgørelsen af de udledte spildevandsmængder fra kommunale spildevandsanlæg mv. bygger på oplysninger dels fra de kommunale spildevandsplaner, dels fra det kommunale og amtskommunale tilsyn på anlæggene.

For 1984 kan regnes med følgende belastning:

	Kvælstof t	Fosfor t
Viborg amtskommune	700	260
Ringkøbing amtskommune	510	210 *
Nordjyllands amtskommune	1200	350
Århus amtskommune	30	10
Samlet belastning,	2440	830
byspildevand	0	

inkl. ca. 100 tons P fra Cheminova

I NPO-redegørelsen er givet et skøn for belastningen med kvælstof og fosfor hidrørende fra overfladisk afstrømning fra befæstede arealer. Regnes skønsmæssigt med, at 1/6 af landets befæstede arealer befinder sig i Limfjordsoplandet, fås følgende årlige belastning fra denne kilde, såfremt man tager udgangspunkt i Miljøstyrelsens tal:

Kvælstof	120	tons
Fosfor	20	tons

Det er ikke af afgørende betydning for den samlede belastningsopgørelse, at der er betydelig usikkerhed knyttet til dette tal.

3.4 Dambrug

Der findes ialt ca. 111 dambrug i oplandet til Limfjorden. Forureningen med kvælstof og fosfor opstår dels som følge af foderspild, dels fra fiskenes stofskifteproduktion.

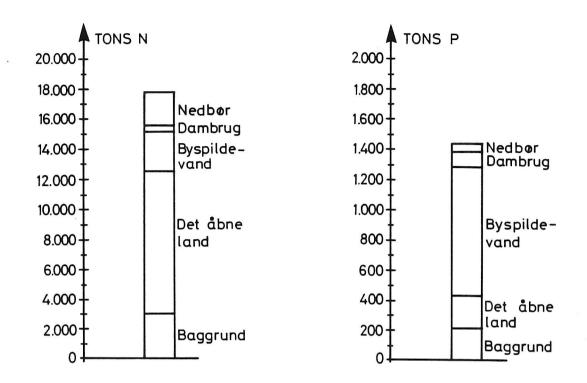
Der kan skønsmæssigt regnes med følgende belastning pr. år fra dambrug.

	Kvælstof t	Fosfor t
Viborg amtskommune	170	60
Ringkøbing amtskommune	70	20
Nordjyllands amtskommune	110	20
Samlet belastning, dambrug	350	100

Atmosfærisk deposition, kontrollerbar del (fra nedbøren)

Produktionen på dambrugene udgør skønsmæssigt 5000 tons/år. Yderligere foregår en mindre produktion af ørreder i havbrug. Belastningen herfra er forsvindende i forhold til ovennævnte.

Den kontrollerbare del af den atmosfæriske deposition skønnes at udgøre ca. 15 kg N/ha/år og 0,3 kg P/ha/år.


For Limfjordens overflade på 1500 km² bliver bidraget:

Kvælstof	1500	х	1,5	t	=	2250	tons/år
Fosfor	1500	х	0,03	t	=	45	tons/år

4. SAMLET BELASTNING 1984

Den samlede årlige belastning med næringssalte kan i henhold til det foregående opgøres som følger (afrundede værdier) (se figur 1):

	Kvælstof t/år		Fosfo	Fosfor t/år	
Baggrundsbelastning	3000	17%	210	15%	
Det åbne land	9500	53%	220	15%	
Spildevand, byer, industri	2600	15%	850	60%	
Dambrug	400	2%	100	7%	
Nedbør, forurenet	2300	13%	50	3%	
Samlet belastning	17800	100%	1430	100%	

Figur 1: Samlet belastning med kvælstof og fosfor på Limfjorden i 1984.

5. BELASTNINGSREDUKTION FORESLÅET AF LIMFJORDSKOMITEEN

Den nuværende belastning med kvælstof og fosfor på Limfjorden har haft en række negative følger for plante- og dyrelivet i fjorden (bundvendinger mv.).

For at nedsætte eutrofieringen af fjorden har Limfjordskomiteen udarbejdet en tids- og handlingsplan. Tids- og handlingsplanens gennemførelse medfører, at der ved alle menneskeskabte forureningskilder vil ske en begrænsning af belastningen.

For så vidt angår belastningen fra det åbne land forudsættes, at der sker en eliminering af de ulovlige udledninger. Derudover konstateres, at der på baggrund af bl.a. NPO-redegørelsen gennemføres en lovgivning, som giver en nedsættelse af belastningen hidrørende fra opbevaringen, udbringningen og anvendelsen af naturgødning, anvendelsen af handelsgødning, ensilagesaft samt afløb af produktionsspildevand, almindeligt husspildevand og lignende, jf. folketingets beslutning af 31. maj 1985.

I nedenstående tabeller er angivet, hvad der skønnes at kunne opnås ved indgreb over for udledninger fra det åbne land.

Kvælstof	Reduktion	Nuværende belastning	Fremtidig belastning
	8	t/år	t/år
Markbidrag	20	6600	5280
Gårdbidrag	80	2900	580
I alt	38	9500	5860

Fosfor	Reduktion	Nuværende belastning	Fremtidig belastning
	8	t/år	t/år
Markbidrag	0	-	_
Gårdbidrag	∿ 80	220	40
I alt	~ 80	220	40

Handlingsplanen indebærer, at der skal ske en 90% reduktion af fosforbelastningen fra kontrollerbare kilder og en 80% reduktion af kvælstofbelastningen fra kontrollerbare kilder (i sommerhalvåret). Der er tale om reduktioner af belastningen fra byer mv. før eventuelle eksisterende rensningsanlæg. I og med, at der ved den nuværende rensningsindsats allerede sker en vis rensning for næringssalte, vil den nuværende udledning fra byer og industri ikke blive reduceret med ovennævnte procenter. For hovedpartens vedkommende renses spildevandet i oplandet til Limfjorden mekanisk-biologisk, hvorved der opnås en reduktion af både N- og P-udledningen, normalt af størrelsesordenen 20-40%. Der er dog væsentlige undtagelser fra denne regel, udledningerne fra Aalborg og Thisted. Samlet skønnes, at den nuværende udledning fra byer og industri yderligere kan reduceres, som følger (afrundede værdier):

11.

Kvælstof	Reduktion	Nuværende belastning	Fremtidig belastning
	8	t/år	t/år
Rensningsanlæg, industri	60	2440	980
Befæstede arealer	∿ 30	120	80
I alt	58	2660	1060

Fosfor	Reduktion	Nuværende belastning	Fremtidig belastning
	8	t/år	t/år
Byer, industri	84	830	130
Befæstede arealer	30	20	10
I alt	83	850	140

For befæstede arealer er regnet med, at etablering af flere forsinkelsesbassiner mv. kan give den angivne reduktion.

For dambrug vurderes, at man ved overgang til brug af miljøtørfoder, etablering af bundfældningsbassiner mv. kan opnå en reduktion af næringssaltudledningen på:

For	kvælstof	20%
For	fosfor	40%

Den fremtidige belastning fra dambrug bliver da som følger:

Kvælstof	Reduktion	Nuværende belastning	Fremtidig belastning
	8	t/år	t/år
Dambrug	20	350	280
Fosfor	Reduktion	Nuværende belastning	Fremtidig belastning
	2	t/år	t/år
Dambrug	40	100	60

Den atmosfæriske deposition skønnes at kunne reduceres med 20%, og den fremtidige belastning bliver herefter:

Kvælstof	1860	t/år
Fosfor	36	t/år

Den forudsatte belastningsreduktion fremgår samlet af følgende oversigt (afrundede værdier):

Kvælstof	Nuværende	belastning	Fremtidig	belastning
	t/år		t/år	
Baggrundsbelastning	3000	17%	3000	25%
Det åbne land	9500	53%	5900	48%
Byspildevand, befæstede arealer, industri	2600	15%	1100	9%
Dambrug	400	2%	300	2%
Atmosfærisk deposition	2300	13%	1900	16%
Samlet belastning	17800	100%	12200	100%

Fosfor	Nuværende belastning t/år		Fremtidig belastnin t/år	
		450		420
Baggrundsbelastning	210	15%	210	43%
Det åbne land	220	15%	40	8%
Byspildevand, befæstede arealer, industri	850	60%	140	29%
Dambrug	100	7%	60	12%
Atmosfærisk deposition	50	3%	40	88
Samlet belastning	1430	100%	490	100%

For den fremtidige situation er beregningsmæssigt forudsat, at der ikke sker stigende tilførsel af spildevand.

6. KONTROLPROGRAM, GENERELT

For at følge fjordens tilstand forestår Limfjordskomiteen et omfattende recipientkontrolprogram.

Kontrolprogrammet har flere formål:

- at skaffe viden om fjordens <u>regionale tilstand</u>, dvs. at skaffe baggrundsmateriale for eventuelle lokale recipientundersøgelser eller -tilsynsprogrammer,
- at afklare om fjordens tilstand er i overensstemmelse med de opstillede målsætninger,
- at kontrollere at investeringer i spildevandsrensning og andre belastningsbegrænsende foranstaltninger fører til den ønskede målsætning,
- at danne grundlag for den løbende revision af recipientkvalitetsplanen.

Det regionale kontrolprogram i Limfjorden er gradvist bygget op således, at element for element er inddraget i et kontinuerligt program. Følgende oversigt viser igangsættelsestidspunktet og hyppighed for de enkelte led i programmet. Antallet af stationer kan variere en del fra år til år, og det samme med frekvensen.

	Start	Antal st.	Hyppighed
Vandkemi	1982	14	13/år
Planktonproduktion	1980	14	13/år
Planteplankton	1983	6	13/år
Dyreplankton	1986	6	13/år
Fisk	1981	ca. 30	hvert år
Sedimentkemi	1987	ikke fastsat	ikke fastsat
Bundflora	1985	3	ca. 1/år
Bundfauna	1978	21	2/år
Iltsvind	1984	25	16/år
Belastning via vandløb	1984	31	12/år
Fjordens vandskifte	1986	2	løbende
Tungmetaller	1974	150	ca. hvert 5. år

Programmet bygger i princippet på målinger på et fast stationsnet i fjorden og dens opland. Stationerne i fjorden omfatter alle de større delafsnit.

7. KONTROLPROGRAM FOR VANDSKIFTE

Kontrolprogrammet for Limfjordens vandskifte tager sigte på at kunne vurdere de ændringer af næringssaltkoncentrationerne i fjorden, som skyldes variationerne i vandskiftet. Det må antages, at disse variationer er relativt store og vil kunne sløre billedet af de forbedringer, der vil opstå som følge af de kommende reduktioner af næringssaltkilderne.

En vigtig faktor for Limfjordens vandskifte er nettogennemstrømningen fra Nordsøen til Kattegat og man har derfor valgt i første række at fokusere på denne faktor og påbegynde de nødvendige målinger.

En ikke uvæsentlig del af fjordens stoftransport sker ved dispersion. Størrelsen af denne dispersion afhænger af definitionen på nettostrøm, dvs. afhænger af hvilket tidsinterval der skal tages gennemsnit over, når nettostrømmen beregnes. Den dispersive transport vil imidlertid kunne beregnes ud fra de aktuelle strømme. Disse strømme gennem fjordens forskellige tværsnit skønnes at kunne beregnes ud fra de aktuelle vandstandsobservationer, som pågår i fjorden.

Det ses heraf, at det er vigtigt at få påbegyndt målingerne af fjordens nettostrøm, hvorimod den dispersive transport altid vil kunne vurderes ud fra eksisterende målinger.

8. DEFINITION AF NETTOSTRØM

Nettostrømmen gennem et tværsnit i fjorden kan defineres som det tidslige gennemsnit over et givet tidsinterval af den aktuelle vandføring over tværsnittet. Nettostrømmen er derfor et statistisk begreb, som det kun er meningsfuldt at omtale i forbindelse med ovennævnte tidsinterval samt tværsnittets placering i fjorden.

Flere kilder angiver, at nettostrømmen som langtidsmiddel (over mange år) udgør ca. 80-100 m³/s ved Løgstør i østgående retning. Betragter man imidlertid, som et teoretisk eksempel, en periode på et halvt år og antager man, at vandstanden ved slutningen af perioden var 0,5 m højere end i starten, svarer dette netop til en gennemsnitlig vandtilførsel på ca. 100 m³/s i perioden. Man kan heraf se, at vandskiftet for fjordens delområder ikke blot afhænger af langtidsmidlen af nettostrømmen, men i høj grad også af de aktuelle strømme forårsaget af bl.a. vandspejlsforskellene. På uge- eller månedsbasis vil der forekomme markante forskelle på nettostrømmen gennem henholdsvis den vestlige og østlige del af fjorden.

9. GENNEMGANG AF MÅLEMETODER FOR NETTOSTRØMMEN

I det følgende gives en oversigt over hvilke målemetoder der kan komme på tale ved bestemmelse af Limfjordens nettostrøm. Indledningsvis skal man diskutere hvilke lokaliteter, som vil være bedst egnede.

Nettostrømmen opstår som differensen mellem den østgående og vestgående bruttostrøm. Det er derfor afgørende for en nøjagtig bestemmelse af nettostrømmen, at bruttostrømmene er så små som muligt. En væsentlig del af bruttostrømmen er tidevandsstrøm. I nedenstående tabel, baseret på ref. [3], er angivet amplituderne i tidevandsstrømmen i forskellige tværsnit i fjorden.

	Amplitude i tidevandsstrøm	
	m ³ /s	
Thyborøn Kanal	5500	
Oddesund	2800	
Sallingsund	2700	
Løgstør	400	
Draget (Nibe - Gjøl)	250	
Aalborg	1100	
Hals	1200	

Da nettostrømmen på årsbasis er i størrelsesordenen 100 m³/s, bemærker man, at den mest egnede strækning til måling af denne helt tydeligt er strækningen Løgstør - Draget.

Man skønner, at man ved omhyggelige målinger også vil kunne måle nettostrømmen ved Aalborg, hvorimod det næppe vil være praktisk muligt i fx Thyborøn kanal eller Sallingsund.

9.1 Måling med manuel eller selvregistrerende måler

Manuel strømmåler, som aflæses regelmæssigt, kunne opstilles på Aggersundbroen eller på Jernbanebroen i Aalborg. Betjeningen kunne efter nærmere af-

16.

tale og mod betaling formentlig foretages af bropersonalet. En måling over 10 min. hver 4. time skønnes tilstrækkelig.

Selvregistrerende målere kunne placeres på samme broer eller ved fritliggende bøjer. Udskiftning af magnetbånd skal kun ske hver anden måned, men på grund af begroning og tilstopning har man erfaring for, at sådanne målere skal tilses mindst en gang om ugen.

For at kunne omsætte den målte strømhastighed til en vandføring gennem tværsnittet, kræves udført profilmålinger, hvor hastighedens fordeling over tværsnittet måles. Omsætningsfaktoren kaldet profilfaktoren er normalt forskellig for de to modsatte strømretninger.

Kontinuerte strømmålinger efter en af disse metoder må anses for at være den sikreste måde til bestemmelse af nettostrømmen.

9.2 Limfjordskomiteens Limfjordsmodel

I forbindelse med "Limfjordsundersøgelsen 1973-75" opstillede Dansk Hydraulisk Institut for Limfjordskomiteen en hydrodynamisk model af vandbevægelsen i Limfjorden. Modellen kræver som input timeværdier af vandstande i Thyborøn og Hals samt vindhastighed og retning over fjorden. Resultaterne er vandstande og vandføringer overalt i fjorden hver time. På baggrund af disse aktuelle værdier kan middelværdier over større tidsintervaller bestemmes.

Denne EDB-model er velegnet til brug ved bestemmelse af nettostrømmen. Der kræves som nævnt indtastning af input på timebasis.

9.3 Indirekte målemetoder ud fra vandspejlsforskelle og/eller vindobservationer

Det er fysisk velbegrundet at forvente en lineær sammenhæng mellem den langsgående vindvektor og nettostrømmen i fjorden. En sådan metode har tidligere (ref. [3]) været anvendt til en langtidsvurdering af denne. Denne korrelation er dog relativt usikker, når det gælder kortere tidsintervaller, fx uger eller måneder. Årsagen hertil er, at nettostrømmen er nøjere knyttet til vandspejlsdifferenser end til vinden.

Vandspejlsforskelle i fjorden skyldes

- 1. Tidevand i Nordsøen og Kattegat
- 2. Vindstuvning i Nordsøen og Kattegat
- 3. Lokale vindstuvninger i fjorden.

Kun de to sidstnævnte bidrager af betydning til generering af nettostrømmen og det ville derfor være hensigtsmæssigt, såfremt man kunne bestemme nettostrømmen ud fra gennemsnitlige vandspejlsforskelle (fx døgnmidler), da beregningsarbejdet herved kunne lettes væsentligt.

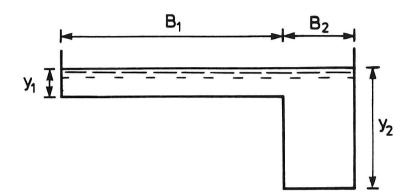
I det følgende afsnit vil man nærmere redegøre for denne metode.

10. NØJERE BESKRIVELSE AF BEREGNINGEN AF NETTOSTRØMMEN UD FRA VANDSTAND I LØGSTØR OG AALBORG SAMT VINDEN

De principper, som omtales her, er i store træk i overensstemmelse med de metoder, som blev anvendt i ref. [2].

10.1 Chezy's formel i et bredt tværsnit med vindpåvirkning

Betragtes indledningsvis en vandret, rektangulær kanal, kan vandføringen Q i kanalen bestemmes ud fra Chezy's formel, hvor vindens påvirkning også er medregnet:


$$Q = AC \left[g Y \left(\frac{\tau_{w}}{\gamma y} + \frac{\Delta h}{L}\right)\right]^{\frac{1}{2}}$$

(1)

hvor

- A er tværsnitsarealet som gennemstrømmes
- C er Chezy's modstandstal
- g er tyngdens acceleration
- y er vanddybden
- $\tau_{_{\rm LV}}$ er vindforskydningsspændingen
- γ er vandets rumvægt
- Δh er vandspejlsforskellen
- L er kanalens længde

Da Limfjorden mellem Løgstør og Aalborg ikke kan tilnærmes med et rektangulært tværsnit, kan formel (1) ikke anvendes direkte. Fjorden består som bekendt af et smalt løb omgivet af et bredt fladvandet område. Både vindpåvirkningen og den hydrauliske strømningsmodstand må forventes at være væsentlig forskellige for de to dele af tværsnittet. Man har derfor valgt at antage, at tværsnittet kan tilnærmes med det på figur 2 viste tværsnit.

Figur 2: Tilnærmet strømmingstværsnit Løgstør-Aalborg.

Herefter skal formel (1) anvendes på hvert af deltværsnittene og vandføringerne skal derefter adderes. Bemærk, at der i visse ekstreme tilfælde vil kunne forekomme modsat rettede strømhastigheder i de to deltværsnit. Denne måde at anvende Cherzy's formel på, er i overensstemmelse med indførelsen af den såkaldte hydrauliske modstandsradius. Ovennævnte metode må dog forventes at være mere korrekt, hvad angår vindens virkning.

10.2 Vindforskydningsspændingen

Vindforskydningsspændingen $\boldsymbol{\tau}_{_{\boldsymbol{W}}}$ antages at kunne beregnes af

$$\tau_{\rm w} = c_{\rm d} \frac{1}{2} \rho_{\rm L} u_{10}^2$$

hvor

 c_d er dimensionsløs luft/vand friktionskoefficient

 ρ_{T} er luftens massetæthed

 u_{10} er vindhastigheden i 10 m højde

19.

(2)

Friktionskoefficienten c_d er behæftet med en væsentlig usikkerhed. Årsagen er formentlig, at turbulensen i atmosfæren er påvirket af topografien af omkringliggende landområder samt temperaturforskellen mellem vand og luft. Det foreslås indtil videre at anvende følgende udtryk:

$$c_d = (0.63 + 0.066 u_{10}) 10^{-3} (u_{10} i m/s)$$
 (3)

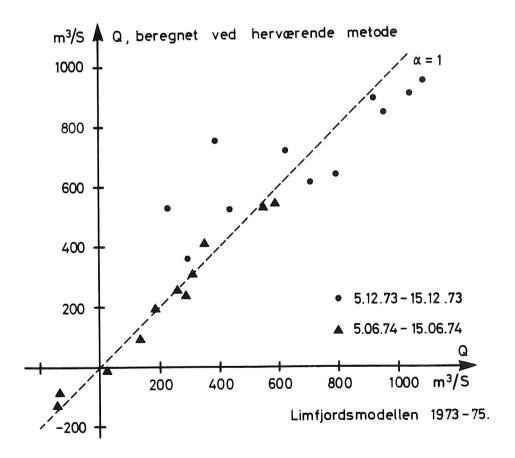
Den beregnede vindforskydningsspænding skal herefter projiceres på fjordstrækningens længderetning.

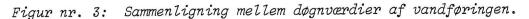
10.3 Bortfiltrering af tidevandsstrømmen

Som tidligere omtalt vil det være hensigtsmæssigt at kunne beregne nettostrømmen på grundlag af døgnmidler af vandstanden. Derved bortfiltreres tidevandet stort set. Da energitabet i strømningen ikke er lineært med vandføringen, men som bekendt kvadratisk, giver en bortfiltrering af tidevandet anledning til en fejl i beregningen, idet energitabet derved undervurderes. Denne fejl vil være størst ved små nettovandføringer.

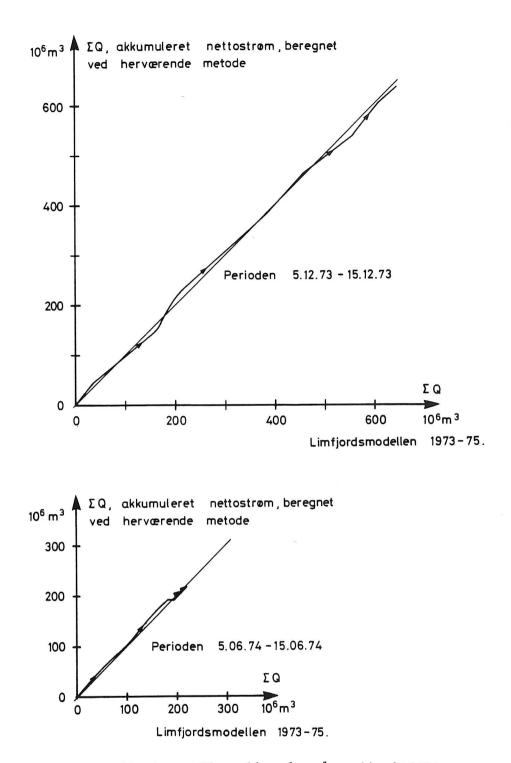
For at korrigere beregningerne for denne fejl indregnes tidevandet i Chezy's formel på følgende måde. Der beregnes en gennemsnitlig vandføring over en tidevandsperiode, idet det antages, at tidevandet skyldes en harmonisk vandstandsvariation ved kanalens ene rand. Amplituden a_t i denne variation er tilpasset således, at den fremkalder den korrekte tidevandsstrøm i kanalen. Gennemsnittet kan beregnes fx af 12 værdier og udtrykket bliver

$$Q = \frac{1}{12} \sum_{i=1}^{12} A C \left[g Y \left(\frac{\tau_w}{\gamma y} + \frac{\Delta h + a_t \sin(2\pi i/12)}{L} \right) \right]^{\frac{1}{2}}$$


Anvendelse af døgnmidlede vandstande bortfiltrerer naturligvis også andre komponenter i spektret af vandspejlsdifferenserne, men tidevandet skønnes at være den vigtigste.


10.4 Tilpasning af parametre, målenøjagtighed

Den her foreslåede beregningsprocedure kræver tilpasning af et antal parametre, herunder Chezy-koefficienter, kanalbredder og dybder mv. Man har valgt at foretage tilpasningen til de beregnede værdier i Limfjordsundersøgelsen (ref. [3])'s to verifikationsperioder. Årsagen til, at man ikke har valgt at anvende målte værdier, har været at undgå at få måleusikkerheden fra målingerne i 1973-75. Problemet er primært spørgsmålet om koteringen af vandstandsmålerne, hvor måleren i Løgstør har været beskadiget og nedtaget flere gange siden 1975.


På figur nr. 3 ses en sammenligning mellem nettostrømmen beregnet ved henholdsvis Limfjordsmodellen og herværende metode. Man bemærker, at overensstemmelsen er nogenlunde god. Betragter man imidlertid også figur nr. 4, hvor værdierne er akkumuleret døgn for døgn, ses at overensstemmelsen er tilfredsstillende.

Med baggrund i figur nr. 3 skønner man, at usikkerheden ved herværende metode er relativ stor, formentlig 30-40%, på døgnværdierne. Da en række fejl udjævnes over længere perioder, skønnes fx månedsværdier at have en nøjagtighed af størrelsesordenen 20%. Disse skøn forudsætter imidlertid, at koteforskellen til de to vandstandsmålere kendes eksakt.

21.

Figur nr. 4: Sammenligning mellem akkumulerede nettostrømme.

Det oplyses, at middelfejlen på kotedifferensen ved anvendelse af Geodætisk Instituts fixpunkter over afstanden fra Løgstør til Aalborg er ca. 2 cm. På grundlag af nogle overslagsmæssige beregninger baseret på en skønnet hyppighedsfordeling af vandspejlsdifferenser Løgstør-Aalborg (se evt. ref. [3] bilag 8.55) skønner man, at en kotefejl på 2 cm vil give en fejl på nettostrømmen på 30-50 m³/s.

22.

Såfremt denne usikkerhed ønskes reduceret, må der udføres strømmålinger til kalibrering af metoden. Strømmåling med selvregistrerende måler i 1-2 måneder skønnes at være tilstrækkeligt.

Man skal gøre opmærksom på, at ovennævnte usikkerhed også er til stede ved anvendelse af DHI's model, som er stærkt følsom over for fejl på koteforskellen mellem Thyborøn og Hals.

11. REFERENCER

- [1] Ministeriet for Offentlige Arbejder, 1942: Betænkning af den af Ministeriet for Offentlige Arbejder af 16. april 1937 nedsatte Kommission til Undersøgelse af Spørgsmålet om Foranstaltninger til Sikring af Limfjordstangerne og Thyborøn Havn og Kanal.
- [2] Thyborønudvalget af 1957, 1959: Stormflodsvandstande i Limfjorden med åben Thyborøn kanal. Udarbejdet af Laboratoriet for Havnebygning, DTH.
- [3] Limfjordskomiteen, 1975: Limfjordsundersøgelsen 1973-75, delrapport 4, vandskifteundersøgelser. Udarbejdet af Dansk Hydraulisk Institut.